2022年六年级数学逻辑思维经典题汇总Ⅰ(附答案)

1.两个相同的瓶子装满酒精溶液。一个瓶中酒精与水的比2︰3,另一个瓶中酒精与水的比是3︰5,若把两瓶酒精溶液混合,混合后酒精与水的比是多少?
【答案】
因为两个瓶子相同,可以分别求出每个瓶中酒精占瓶子容积的几分之几,在求出混合后酒精和水各占容器容积的几分之几,即可求出混合后酒精与水的比。
2.某饮料店有一桶奶茶,上午售出其中的25%,下午售出30升,晚上售出剩下的10%,最后剩下的奶茶再减6升刚好半桶,问一桶奶茶共有多少升?
【答案】
设一桶奶茶共有a升,则晚上售出(a﹣25%a﹣30)×10%,此时剩下(a﹣25%a﹣30)×(1﹣10%),对应着50%a+6,列出方程求解。
3.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
【答案】
根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱
3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
4.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
【答案】
由己知条件可知道,每天用去30袋水混,同时用去30×2袋沙子才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样オ累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
解:水泥用完的天数:
120÷(30X2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数
180×2=360(袋)
答:运进水泥180袋,沙子360袋
5.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
【答案】
根据己知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
解:12个纸箱相当木箱的个数
2×(12÷3)=2×4=8(个)
个木箱装鞋的双数:
1800:(8+4)=18000÷12=150(双)
个纸箱装鞋的双数
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋150双
6.某商店出售啤酒,规定每5个空啤酒瓶能换1瓶啤酒。张叔叔家买了80瓶啤酒,喝完后再按规定用空啤酒瓶去换啤酒,那么他们家前后共能喝到多少瓶啤酒?
【答案】
喝掉80瓶啤酒,用80个空瓶换回16瓶啤酒;喝掉16瓶啤酒,用16个空瓶换回3瓶啤酒余1个空瓶;喝掉3瓶啤酒,连上次余下的1个空瓶还剩4个空瓶。此时,再借1个空瓶,与剩下的4个空瓶一起又可换回1瓶啤酒,喝完后将空瓶还了。
所以,他们家前后共喝到啤酒80+16+3+1=100(瓶)。
7.一个储水箱有四个水龙头。用第一个需要两天的时间才能装满储水箱,第二个需要三天,第三个要四天第四个只要六小时。那么如果四个水龙头一齐开,需要多久可以把储水箱装满?
【答案】
因为一天有24小时,在一个小时里可以装了第一个水龙头灌的1/48,第二个水龙头灌的1/72,第三个水龙头灌的1/96和第四个水龙头灌的1/6。这 就总共灌了(6+4+3+48)/288=61/288.那么储水箱将需要288/61个小时,就是4小时43分和大概17秒。
8.数学老师和班主任打赌,班上的50名同学中,至少有两个同学生日相同,输家要请对方吃大餐,班主任信心满满准备痛宰对方一顿,毕竟一年365天,自己赢面居多。
事实真的像他所想的那样吗?哪一方的胜率比较高呢?
A、班主任 B、数学老师 C、胜率相同
【答案】
数学老师胜率约为97%
9.一次竟赛中,小东的语文成绩和自然成绩加起来是197分,语文成绩和数学成绩加起来是199分,数学成绩和自然成绩加起来是196分。小东哪一科成绩最高?小东的各科成绩分别是多少?
【答案】
根据题目所给的三个已知条件不难看出是语文分数最高,如何求出三科的成绩各是多少分呢?可用“整体思路”进行思考,因为这道题是属于已知“甲乙两数之和、乙丙两数之和、丙又与甲数之和”而求甲、乙、丙三个数各是多少的“回环”问题。解题时先将三个两两之和加起来得到三科的“两两总成绩”(每科的成绩都计算了两次),接着除以2得到三科的(一次)总成绩,然后用这个总成绩减去语文自然总分得数学分、减去语文数学总分得自然分、减去自然数学总分得语文分。
10.甲、乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5:4,相遇后甲的速度减少20%,乙的速度增加20%,这样当甲到达B地时,乙离A地还有10千米,那么A,B两地相距几千米?
【答案】
解:相遇后的速度比是5×(1-20%):4×(1+20%)=5:6。 相遇时甲行了5份,乙行了4份, 相遇后,当甲行完余下的4份时,乙行了4×6/5=4.8份。 所以每份是10÷(5-4.8)=50千米。 所以AB两地相距50×(5+4)=450千米。
11.某造纸厂在100天里共生产2000吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?
【答案】
中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨, 因为在100天里共生产2000吨,平均每天产量:2000÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3。 最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天。 中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨, 因为在100天里共生产2000吨,平均每天产量:2000÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3。 最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天。
12.姐妹两人同时出发从甲地到乙地,妹妹走前半段路程每小时行3千米,走后半段路程每小时行6千米;姐姐在行这段路程所用的时间中,前半段时间是每小时行3千米,后半段时间是每小时行6千米.她们两人能同时到达乙地吗?为什么?
【答案】
解答:妹妹平均每小时行2÷(1/3+1/6)=4千米, 姐姐平均每小时行(3+6)÷2=4.5千米, 姐姐速度快,应先到。
13.某商店分别花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是9.60元、16元、18元.如果把这三种糖果混合成什锦糖,按20%的利润来定价,那么这种什锦糖每千克定价是多少元?
【答案】
解答:3÷(1/9.6+1/16+1/18)×(1+20%)=16.2元。
14.今天长途班车比往常早到站了。汽车站立即派人骑自行车将随班车的`邮件送往邮局,自行车走了半小时,遇到邮局派出取邮件的摩托车,车 手接过邮件后,一点也不耽搁掉头就返回邮局,结果比往常早到了20分钟.如果摩托车每天去车站取邮件的出发时间和行驶速度都一样,那么今天长途班车比往常 到站时间提前了几分钟?
【答案】
40分钟。逆向思维 比往常早到了20分钟是说 车手少走的自行车所走的半小时的路程,即车手要少走的10分钟路程,所以长途车比往常提前了30+10=40分钟。
15.一自行车选手在相距950千米的甲、乙两地间训练.他从甲地出发,去时每90千米休息一次,到达乙地后休息一天,再沿原路返回.返回时,每100千米休息一次.他发现恰好有一个休息地点与去时的一个休息地点相同.问这个地方距离甲地有多远?
【答案】
去时距离甲地是90的倍数,即90,180,270千米……处,返回时距离乙地是100的倍数,即距离甲地是950-100的倍数,两者的交集是距离甲地450千米处。把它看作一个相遇问题。 950÷(100+90)=5 5×90=450千米。
16.甲仓库原有存货 甲、乙两个仓库,乙仓库原有存货1200吨.当甲仓库的货物运走7/15,乙仓库的货物运走1/3以后,再从甲仓库取出剩下货物的10%放入乙仓库,这时甲、乙两仓库中的货物重量恰好相等.那么甲仓库原有存货多少吨?
【答案】
1200吨×1/3=400吨,乙仓运走的, 1200吨-400=800吨.乙仓库剩下的, 1-7/15=8/15,是甲仓库剩下的, 8/15×(1-10%)=12/25,是甲现在剩下的, 12/25-(8/15×10%)=32/75,是乙仓库剩下的是甲原来的几分之几, 800÷32/75=1875吨,就是甲原来的存货。
17.甲、乙两车分别从A,B两地同时出发相向而行,6小时后相遇在C地,如果甲车的速度不变,乙车每小时多行5千米,且两车还从A,B 两地同时出发相向而行,则相遇的地点距离C地12千米;如果乙车的速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距 离C地16千米.甲车原来每小时行多少千米?
【答案】
解答:由于假设的两车速度和相等, 那么相遇时间就相同, 相遇时间是(12+16)÷5=5.6小时。 甲车原来每小时行12÷(6-5.6)=30千米。
18.有一个蓝精灵,住在大森林里。他每天从住地出发,到河边提水回来。他提空桶行走的速度是每秒5米,提满桶行走的速度是每秒3米。提一趟水,来回共需8分钟。蓝精灵的住地离河边有多远?
【答案】
提空桶行走的速度∶提满桶行走的速度=5∶3。从反比关系得到
提空桶行走的时间∶提满桶行走的时间=3∶5。
来回一趟共计用8分钟,刚好8=3+5,所以
提空桶行走的时间=3分钟=180秒。
5×180=900(米)。
蓝精灵的住地到河边的距离是
走同样长的路程,所用的时间和速度成反比。
19.乒乓球比赛场地上,共有10张球桌同时进行比赛,有单打,也有双打,共有32名球员出场比赛。其中有几桌是单打,几桌是双打呢?
【答案】
单打每张球桌2人,双打每张球桌4人。
如果10桌全是单打,出场的球员将只有20人。
但是现在有32人出场,多12人。
每拿一桌单打换成双打,参赛的球员多出2人。
要能多出12人,应该有6桌换成双打。
答案是:6桌双打,4桌单打。
这个单打双打问题,按照题型来看,属于传统的鸡兔同笼问题。上面所用的解法,也是鸡兔同笼问题的常规解法,先假定都是同一种,然后替换。
也可利用中国古代解答鸡兔同笼问题时的“折半”法,算法更简单。
每张球桌沿着中间的球网分成左右两半,只考虑左半边。
单打的球桌左半边站1个人,双打的球桌左半边站2个人。
10张球桌两边共站32个人,左半边共站16个人。
20.小玲从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校。如果每分钟走50米,则要迟到3分钟。小玲的家离学校的路程有多远?
【答案】
根据问题的条件,从家走到学校,两种速度所用时间的差是
6+3=9(分)。
如果有两个人同时从小玲家往学校走,其中一个人以每分钟80米的速度快走,另一个人以每分钟50米的速度慢走,那么当快走的人到达学校时,慢走的人还差9分钟的路程,即
50×9=450(米)。
从两人同时同地出发,到距离拉开成450米,所用的时间是
450÷(80-50)=15(分)。
这15分钟是从家快步走到学校所用的时间,所以家到学校的距离是
80×15=1200(米)。

添加 家长论坛微信

全部 0条评论