数学竞赛学什么,怎么学,你真的清楚吗?

一、到底我们说的竞赛有哪些?
我们一般所说的竞赛是:(按照重要性排序)数学、物理、化学、生物、信息学(计算机)。这个重要性,也就是北大清华对这些竞赛的重视程度。数学获得加分人数最多,其他学科依次减少。今天我们来谈谈数学竞赛到底学什么。
二、数学竞赛的考试形式及流程
数学竞赛主要分为四个阶段,联赛一试、联赛二试、中国数学奥林匹克(全国中学生数学冬令营)、国际数学奥林匹克(IMO)四个阶段。
二、全国高中数学联赛、CMO、IMO大纲
全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》。
全国高中数学联赛(二试)在知识方面有所扩展,适当增加一些教学大纲之外的内容,所增加内容是:
1.平面几何
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;
三角形旁心、费马点、欧拉线;
几何不等式;
几何极值问题;
几何中的变换:对称、平移、旋转;
圆的幂和根轴:面积方法,复数方法,向量方法,解析几何方法。
2.代数
周期函数,带绝对值的函数;
三角公式,三角恒等式,三角方程,三角不等式,反三角函数;
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式;
第二数学归纳法;
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数及其应用;
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根;
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*;
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理;
函数迭代,求n次迭代*,简单的函数方程*。
3.初等数论
同余,欧几里得除法,裴蜀定理,完全剩余系,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法*,欧拉定理*,孙子定理*。
4.组合问题
圆排列,有重复元素的排列与组合,组合恒等式;
组合计数,组合几何;
抽屉原理
容斥原理;
极端原理;
图论问题;
集合的划分;
覆盖;
平面凸集、凸包及应用*。
(有*号的内容加试中暂不考,但在CMO、IMO中可能考。)
四、如何学习
三、数学竞赛学习方案
关于如何学习数学竞赛,有什么不同的规划?根据不同的学生情况,给出了3种不同的方案:
① 初三开始学习高中竞赛
如果孩子学过初中竞赛,并且没有太多中考压力,建议在初三开始学习高中内容(推荐的自学教材为《奥数教程》)。这样的话,在高一刚开学就可以参加一次高联,情况好的话可拿下一试和二试的几何与组合。接下来高一高二两年重点学习二试内容,初期是《奥林匹克小丛书》(小蓝本),往后可以是《奥赛经典》、《命题人讲座》等,并在两个考前的暑假做些赛前模拟。
② 高一开始学习高中竞赛
如果你是从高一开始正式学习高中竞赛,并且定位是省一以上,那么你可能需要把比较多的精力在竞赛上。首先在高一一年里,你必须在一试的难度上学完高中内容,并且对二试有一定的涉及,自学要求为《奥数教程》和《奥林匹克小丛书》(能力过强者可跳过《奥数教程》),然后第二年再进行更强的学习,攻克《命题人讲座》等。
③ 高二开始学习高中竞赛
如果你是从高二开始正式学竞赛,那么前提是你必须已经具备比较强的一试功底,然后攻克《奥林匹克小丛书》和《命题人讲座》。并且一般来说由于竞争对手们过于强大,你的定位一般是省一和自招。(当然也不绝对,笔者当年就是从高二开始学的,通过努力,冲进国集也是有可能的)。
正所谓“春暖花开谈恋爱,不如一心一意搞竞赛”,学竞赛注定是一个孤独而有趣的过程。高考党更多是出于外界的设定如选择了高考,但竞赛党一定是因为自己的兴趣而选择了竞赛。多年之后,你可能会忘了竞赛题该怎么去解,也可能会忘了什么是柯西不等式或者费马小定理,但是你不会忘记你在解题过程中学会的这种思维方式和习惯,更不会忘记自己曾经在一个十六七岁的年纪,就为了某个自己喜欢的东西而奋不顾身追寻的这一腔热血。以上正是学习数学竞赛的四个境界。

添加 家长论坛微信

全部 0条评论